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ABSTRACT: Nitric oxide (NO), produced by nitrite reductases or nitric oxide synthases, performs vital roles in signaling and the
immune response. Iron sulfur (FeS) clusters are known targets for NO induced degradation, serving as sensors to trigger cellular
responses. However, this FeS reactivity is proposed as NO specific, with no demonstrated reactivity toward nitrite, a soluble NO
storage molecule. We demonstrate that synthetic FeS clusters supported by various ligands undergo facile nitrosylation by nitrite in
the presence of a reductant, evidencing the nitrite reductase reactivity for FeS clusters. Moreover, a mononitrosylated Fe4S4 cluster,
[tempS3Fe4S4(NO)]2−, can be readily synthesized by this approach, enabling further investigation into the FeS cluster repair and
decomposition under NO induced oxidative stress.

Nitric oxide is a key gasotransmitter involved in immune
response and inflammation1−8 but has a short half-life

due to rapid reactions with dioxygen, thiols, and metal
cofactors.9−11 Cells store NO in molecules like nitrite
(NO2

−), which can be reduced on-demnad to liberate NO
(Figure 1A).12−17 Heme cofactors in enzymes and synthetic
model complexes facilitate nitrite reduction, forming a metal−
NO adduct with net O atom transfer to a suitable acceptor
(e.g., phosphines) or an oxo-metal complex with NO
release.18−23 Protein-bound iron−sulfur (FeS) clusters, such
as [Fe4S4]0/1+/2+, are susceptible to nitrosation by NO and
subsequent cofactor dissociation, which are characteristics of
nitrosative stress.24 This sensitivity to NO has led to specific
FeS proteins to be sensors to nitrosative stress and to trigger
the cellular stress response.25−40 Reaction of FeS clusters with
NO results in rapid and uncontrolled nitrosation with mixtures
of polynitrosyl species, including Roussin’s black anion,
Roussin’s red ester, and dinitrosyl iron complexes (DNICs)
observed (Figure 1B).41−46 A mononitrosylated Fe4S4 species
is proposed as the initial product of reaction with NO. This
[Fe4S4NO] cluster has remained elusive to characterization,
however, with only one synthetic example in which sterically
encumbering N-heterocyclic carbenes are used as ancillary
ligands (Figure 2A).47 Understanding the repair and down-
stream chemistry of nitrosylated FeS clusters has been
consequently limited.35,42,48−50

Whereas heme and nonheme metal cofactors have known
roles in nitrite to NO conversion, there has been no reported
reactivity of FeS clusters toward nitrite. Holm and Weigel
stated that nitrite is unreactive to a site differentiated 4Fe4S
cluster with one chloride ligand, and LeBrun’s group reported
no reaction of NO2

− with the [4Fe-4S] NsrR holoprotein.24,51

Herein, we demonstrate the general efficacy of nitrite as a NO
source for Fe4S4 and Fe2S2 clusters using phosphines as
sacrificial net O atom acceptors (Figure 2B). Use of a
templating tris(phosphine) or tris(thiolate) ligand allows direct
access to mononitrosylated Fe4S4 clusters, of which the thiolate

congener is structurally characterized. Finally, the phosphine
can be readily substituted for the NADH analogue (1)-benzyl-
1,4-dihydronicotinamide (or BNAH) to effect nitrite to NO
conversion, suggesting a broader role for nitrite in oxidative
stress.

Complex (Ph4P)2[(tempS3)Fe4S4Cl] or (Ph4P)2[1-Cl] is
readily derived from the reported (Ph4P)2[(tempS3)-
Fe4S4(SEt)] (Figures S1 and S14),52 and confirmed as
unreactive toward nitrite sources by NMR and IR spectroscopy
(Figure S3).24,51 Reaction of a stoichiometric equivalent of a
phosphine and (Ph4P)NO2 in acetonitrile with [1-Cl]2− results
in complete conversion of the starting complex to a new
species with pronounced new IR absorptions at 1682 cm−1 and
1652 cm−1 and 31P NMR spectra support the corresponding
phosphine oxide as a product (Figure S5). This IR absorption
at 1682 cm−1 is comparable to that of the assigned NO
stretching mode of other metal nitrosyl species, including
DNICs and the [(IMes)3Fe4S4(NO)]n+ (n = 0−2) series of
complexes (Figure 2A), and for a transient species observed by
LeBrun and co-workers in reactions of [(tempS3)-
Fe4S4(SEt)]2− with nitric oxide (ca. 1690 cm−1).47,53 The
1652 cm−1 vibration is consistent with the tetra(nitrosyl)
cluster, [Fe4S4(NO)4]2−. Other nitrite salts, such as NaNO2,
were tested and are competent for nitrosylation, but (Ph4P)-
NO2 allows easier separation of the chloride salt byproduct and
minimizes the yield of [Fe4S4(NO)4]n− (Figure S17A).
Similarly, tris(cyclohexyl)phosphine afforded the maximal
conversion of (Ph4P)2[1-Cl] to (Ph4P)2[1-NO] over the
other phosphines tested (Figure S17B). The cluster,
(Ph4P)2[1-Cl] is also unreactive toward phosphines, as noted
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for a related system,51 and reaction of PCy3 with nitrite in the
absence of a cluster does not afford Cy3PO or any observable
new product in 31P NMR spectra (Figure S27).
Single-crystal X-ray diffraction analysis supports the product

as (Ph4P)2[(tempS3)Fe4S4(NO)] or (Ph4P)2[1-NO] with a
net substitution of Cl− by NO− based on charge balance within
the lattice (Figure 3A). The unit cell contains two complexes
with one having an Fe−N−O angle of 171.7(6)° (Figure 3B),
and the other exhibiting positional disorder of the bound NO
and refined in a 4:1 ratio with Fe−N−O angles of 153(2)° and
169(1)°, respectively (Figure S16). The Fe−N and N−O bond
lengths agree with those of prior reported polynitrosyl iron

complexes and for Suess’s mononitrosyl Fe4S4 cluster,46,47 all
of which were accessed from NO. This cluster is asymmetric
with one pair of Fe centers having a short iron−iron contact
(i.e., 2.7013(9) Å and 2.7090(8) Å) and the other pair having
a long iron−iron distance (i.e., 2.8145(9) Å and 2.783(1) Å),
consistent with the coupled pairs of iron centers (i.e., two
Fe2.5+2 or one Fe2.5+2 and one Fe2+2) invoked in DFT
methods.54

To interrogate the electronic structure, Mössbauer spectra
were recorded on [1-NO]2−. Spectra recorded at 600 G and
5.6 K afford a broad, asymmetric doublet with an average
isomer shift and quadrupole splitting (δavg = 0.45 mm/s,
ΔEQavg = 1.14 mm/s) comparable to those of the starting
chloride complex, [1-Cl]2− (Figure S1), and of protein-bound
and other synthetic [Fe4S4]2+ clusters.

55,56 Although the 600 G
spectrum contains only one doublet, spectra recorded in 5 and
7 T applied magnetic fields require four distinct components to
account for all absorptions and spectra best simulated with
spin-Hamiltonian for an S = 1 ground state (Figure 3C). The
resulting spin-Hamiltonian fit parameters (Table S10) indicate
one delocalized Fe2.5+Fe2.5+ pair and one partially localized
Fe2+Feu pair, where Feu denotes the site bearing the NO ligand.
This analysis agrees with DFT calculations and prior
conclusions on the [(IMes)3Fe4S4(NO)]n− complexes (Figure
2A).47 Whereas charge population analysis, which reflects
electronic delocalization, and DFT computed Mössbauer
isomer shifts suggest that Fe2+ bound with NO is the most
accurate description of the Fe−NO bond, the broken
symmetry spin-coupling calculations implicate a triplet NO−

donor antiferromagnetically coupled to a ferric center (Tables
S11−S13). This ambiguity in describing the Fe−NO
interaction highlights the precedented challenge of assigning
formal metal oxidation states in metal NO adducts.

Given the ease with which nitrite and phosphines afford
(Ph4P)2[1-NO], we examined the ligand donor atom type and
cluster nuclearity on nitrite reduction. Starting with donor
atom type, metalation of the triphosphine (tempP3) ligand as
for (tempS3)3− affords (tempP3)Fe4S4Cl or 2-Cl, as confirmed
by X-ray crystallography (Figure S15) and Mössbauer
spectroscopy (Figures S28, S29). 2-Cl contains a formally

Figure 1. Nitrite reduction and NO generation by metallocofactors and reactivity of Fe−S clusters toward NO. General strategy utilized by enzyme
cofactors to generate NO through nitrite reduction (A). Reactivity of FeS clusters toward NO proposed to proceed through a mononitrosyl Fe4S4
cluster, and subsequent nitrosylations to yield various possible products (B).

Figure 2. Prior example of a structurally characterized model of the
3:1 site-differentiated [Fe4S4(NO)]+ cluster isolated by Suess and co-
workers using NO and a sterically encumbering ligand (A) and the
general pathway using nitrite reduction reported here (B).
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[Fe4S4]+ cluster, which is one-electron more reduced than [1-
Cl]2−.55,57 Initial reactions of 2-Cl with nitrite sources and
phosphines generated the phosphine oxide of tempP3 (i.e.,
temp(PO)3) regardless of equivalents of PCy3 added (Figures
S10, S11).58 The optimized reaction conditions based on IR
and 1H NMR spectroscopy are 2-Cl with one equivalent of
NaNO2 in a mixture of PhF and methanol (Figure S19). The
major product complex exhibits solution-phase C3v symmetry
in 1H NMR spectra, and a prominent IR absorption at 1717
cm−1 (Figure S12), which together with combustion analysis,
leads to our tentative assignment of 2-NO as this major
product. The νNO in 2-NO is blue-shifted versus that in [1-
NO]2−, despite the cluster being formally one-electron more
reduced than in [1-NO]2−, and also higher in energy than that
for [(IMes)3Fe4S4(NO)] from Suess and co-workers(cf. 1657
cm−1).47 Thus, thiolate ligands are the strongest donors of the
series, accounting for almost one formal oxidation state of the
Fe4S4 cluster, and suggests that synthetic FeS models using
carbene or phosphine ligands will require more formally
reduced clusters as compared to cysteine thiolate supported
enzyme cofactors clusters to effect similar reactivity toward
small molecules.57,59−62 Reaction of [Fe4S4Cl4]2− or
[Fe4S4(SEt)4]2− with 4 equiv of [Bu4N][NO2] and of PCy3
yielded [Fe4S4(NO)4]2− based on the characteristic absorption
at 1652 cm−1 in IR spectra and the parent ion observed in ESI/
MS data (Figures S22−S25).63 Efforts to control the extent of
nitrosylation had limited success; however, reaction of
[Ph4P]2[Fe4S4(SEt)4] with 1 equiv of [Bu4N][NO2] and of
PCy3 yields a product with an IR absorption of ∼1680 cm−1,
which is comparable to [1-NO]2− and hints that
[Ph4P]2[Fe4S4(SEt)3(NO)] is synthetically accessible (Figure
S20). We also treated (Ph4P)2[1-SEt] with (Ph4P)NO2 and
PCy3, resulting in a partial conversion to (Ph4P)2[1-NO]
(Figure S26). Given the similarities between [1-SEt]2− and
[Fe4S4(SEt)4]2−, the chelating nature of and structural rigidity
conferred by (tempS3)3− versus three EtS− donors or the
donor strength differences between alkyl and aryl thiolates
effectively controls extent of reaction toward nitrite in the
presence of phosphines. Finally, reaction of [Bu4N]2[Fe2S2Cl4]
with 4 equiv of [Bu4N][NO2] and PCy3 yields Roussin’s black
anion as an identifiable product in IR spectra (Figure S20).64

Our findings demonstrate the broad applicability of nitrite

sources and phosphines to effect reduction of nitrite to NO at
synthetic FeS clusters.

From a mechanistic perspective, phosphines can serve as O
atom acceptors or as reductants, the latter evident in prior
reports where phosphines reduce [Fe4S4]2+ clusters by one
electron as in the synthesis of 2-Cl.55,57 Two possible
mechanisms are cluster reduction followed by nitrite
coordination and N−O bond scission or O atom transfer
from a coordinated nitrite directly to the phosphine. To probe
reduction or O atom transfer pathways, we reacted the
synthetic NADH analog, 1-benzyl-1,4-dihydronicotinamide
(BNAH), [Et3NH]Cl, [Ph4P]NO2, and with 1-Cl, which
yielded [1-NO]2− and [Fe4S4(NO)4]2− based on IR and 1H
NMR data of the product mixture (Figure S13, S21). Omission
of [Et3NH]Cl, BNAH, or nitrite from the reaction affords no
nitrosylated cluster products based on IR spectroscopy. Thus,
BNAH is competent to prime the [Fe4S4]2+ cluster toward
nitrite reductase reactivity, resulting in the nitrosylation of the
cluster and cluster products indistinguishable from those
generated with nitric oxide.65,66

Previously, FeS cluster nitrosylation was proposed as being
NO dependent, reliant on the action of other enzymes on
nitrite. Prior work examining the reactivity of nitrite toward
FeS clusters were conducted ex vivo in the absence of reducing
agents, which are available in vivo, or in cell studies wherein
nitrite to NO reduction is also catalyzed by other
cofactors.24,51 Cellular concentrations of NADH are estimated
in the μM range and elevated in cancer cell lines,67 implying
accessible conditions that mirror those in our reactions with
BNAH, and that FeS nitrosylation by nitrite in the cellular
environment is feasible. Moreover, our work demonstrates that
nitrite and nitric oxide are both competent to trigger FeS
cluster degradation in a strikingly similar manner and are both
expected to activate the nitrosative stress response machinery.
These outcomes call for a reexamination of nitrite as not only a
store of the more biologically active nitric oxide but also an
agent of nitrosative damage.
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Figure 3. Characterization of [1-NO]2−. Solid state structure of [1-NO]2− (A) and a detailed view of the cluster with the primary coordination
sphere of the Fe centers and the bound NO depicted (B). Atoms are depicted as 50% probability thermal ellipsoids with orange, yellow, blue, red,
and gray ellipsoids depicting Fe, S, N, O, and C, respectively. H atoms, two Ph4P+ counteractions, and solvent molecules omitted for clarity. Bond
lengths are reported in Å. 57Fe Mössbauer spectra of [1-NO]2− were recorded at 5.6 K with the magnetic field applied parallel to the γ rays (C).
Experimental points are plotted as vertical error bars. Colored lines correspond to the individual Fe sites of the cluster, with the black line
superimposed with the experimental points being the composite spectrum obtained by summing individual spectra with the same integration. The
fit parameters of the four colored lines are given in Table S10.
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